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1 Gilbert Strang Video Lectures from MIT Opencourse, Spring 2005

1.1 Geometry of Linear Equations

We can tackle the problem of finding a solution to a linear system in three different (but equivalent) ways. Consider the

following example: Solve the equations

x+ 2y = 3

2x− y = 7

for x and y. The first approach to solving this problem is to think of the xy-plane where the solution is the point (x, y)

corresponding to the intersection of the two lines given by the above equations. The second, and more practical way, is

to simply write the two equations in matrix notation and solve it. The third, and less obvious way would be to think of

the pair (x, y) for which the linear combination

x

(
1

2

)
+ y

(
2

−1

)
=

(
3

7

)

works (picture this geometrically in your mind and compare this to the line intersection picture earlier). This third

perspective offers some intuitive insight into concepts that will arise later, such as how when x, y ∈ R then the above

linear combination spans the whole xy-plane, but only a unique combination gives us the point we want.

The next obvious question to ask is whether there’s a solution to Ax = b for any b? In other words, do the linear

combination of the columns fill 2-dimensional space? For the case shown above, the answer is yes, because the matrix

A is a non-singular (i.e. invertible) matrix. This obviously extend to the n-dimensional case. We can thus think of the

multiplication Ax in two ways: (1) the dot product of each row of A with x, or (2) the linear combination consisting of

the sum over i of the ith column of A with the ith element of x. So Ax is a combination of the columns of A.

1.2 Strang Video Lecture: Elimination with Matrices

Elimination is the process through which we take the augmented matrix A|b from the equation Ax = b and turn A

into an upper triangular matrix by subtracting from a row the right multiple of the row above it, starting with the second

row. The diagonal elements of the resulting upper triangular matrix (which cannot be zero) are called pivots and their

product gives the determinant of the matrix. It is the most common computation in scientific computing. Once we have

obtained the upper-triangular matrix, we start with the last row and substitute the obtained value into the row above it

until we have all the elements of x. This process is called back substitution. Here’s an example with two steps:1 2 1 | 2

3 8 1 | 12

0 4 1 | 2

→
1 2 1 | 2

0 2 −2 | 6

0 0 5 | −10


Remember that elimination is a row operation. Earlier we learned that a matrix times a column gave us a

combination of the columns of the matrix. Similarly, a row times a matrix gives us a combination of the

rows of the matrix. This means that for example the operation of subtracting 3 times the first row from the second

row of a 3× 3 matrix A (leaving the first and third row unchanged) is equivalent to the following matrix multiplication: 1 0 0

−3 1 0

0 0 1

A =

 A1

A2 − 3A1

A3


A second matrix can now be appended to the beginning of the above multiplication accordingly, giving us E32(E21A) =

(E32E21)A where E32E21 is our elimination matrix that makes first a21 and then a32 zero (a31 was already zero,

otherwise we would also need E31) as well. (Remember that matrix multiplication is associative but not commutative.)

A matrix P that switches the rows of A to give you PA is called a permutation matrix. By switching this to AP

we would change the columns of A instead of its rows. For a 2× 2 matrix we have P = ( 0 1
1 0 ).
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1.3 Multiplication and Inverses

Matrix multiplication can be thought of in different ways. For the equation AB = C, we can think of C = (cij) where

cij =
∑n
k=1 aikbkj (or simply Ai ·Bj), where A is m×n and B is n×p. You can also think of ABj = Cj for j = 1, 2, . . . , p.

In other words, each column of C is a linear combination of the columns of A. Alternatively, you can think of each row

of C as a combination of the rows of B, i.e. Ci = AiB. Finally, you can think of AB as the sum of columns of A times

rows of B. Here’s an example: 2 7

3 8

4 9

(1 6

0 1

)
=

2

3

4

(1 6
)

+

7

8

9

(0 1
)

Note how this approach shows the matrix as the sum of two matrices with the same size as matrix C.

It is also possible to divide the matrices A and B into blocks and do block multiplication.(
A1 A2

A3 A4

)(
B1 B2

B3 B4

)
=

(
C1 C2

C3 C4

)

where for example C1 = A1B1 + A2B3.

Let’s now think of the problem of inverses of square matrices. The main question is how do I identify invertible

(non-singular) matrices, i.e. A−1A = I = AA−1. We already know that when det(A) = 0 it follows that A is singular.

But we can also think of it as follows: A square matrix A has no inverse if I can find a nonzero vector x such

that Ax = 0. In effect what I’m saying here is that when Ax = 0 then the columns of A are linearly dependent.

Gauss-Jordan is a method for solving multiple equations at once. Think of this in terms of finding A−1, i.e. we

want a B such that AB = I or ABj = Ij = ej for all j = 1, 2, . . . , n. Take the simple example of(
1 3

2 7

)(
a b

c d

)
=

(
1 0

0 1

)

which really consists of two simultaneous equations given by A( ab ) = e1 and A( cd ) = e2. We can solve each one separately

by augmenting the right-hand sides to A and using elimination, or we can augment both simultaneously. We begin by

making the matrix upper-triangular, just as in elimination, but we then make the matrix diagonal by adding to upper

rows multiples of lower rows. (
1 3 | 1 0

2 7 | 0 1

)
→

(
1 0 | 7 −3

0 1 | −2 1

)
In short, we have E(A|I) = (I|A−1).

1.4 Factorization into A = LU

From the equation AA−1 = (AA−1)T = (A−1)TAT = I it follows that (A−1)T = (AT )i. Assume that A is some 3× 3

matrix and that through the process of elimination we get E32E31E21A = U (assuming you don’t have to do any row

exchanges as part of the elimination process). We want to find L such that A = LU (where L is a lower-triangular matrix

and U is an upper-triangular matrix. It follows that L = E−121 E−131 E−132 , where finding these inverses is really easy, for

example let

E = E32IE21 =

1 0 0

0 1 0

0 −5 1


 1 0 0

−2 1 0

0 0 1

 =

 1 0 0

−2 1 0

10 −5 1


and the we can obtain L as follows:

L =

1 0 0

2 1 0

0 0 1


1 0 0

0 1 0

0 5 1

 =

1 0 0

2 1 0

0 5 1


So for A = LU, if there are no row exchanges, the multipliers go directly into L. So finding L is just that easy. This

property of L greatly enhances computational ease for large matrices.
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1.5 Transposes, Permutations

When row exchanges must be made we must start by using permutation matrices before we can proceed with elimination.

Now the equation A = LU becomes PA = LU for any invertible A. Think of the permutation P as the identity matrix

with reordered rows. A nice thing about permutation matrices is that P−1 = PT .

Recall that a symmetric matrix is one that is equal to its transpose. This is particularly helpful when one considers

that for any matrix R, the matrix RTR is always symmetric. This is true because (RTR)T = RTR.

1.6 Column Space and Nullspace

We know that R2 is a vector space. The subspaces of R2 are itself, all the lines through the origin, and the origin itself.

By taking all the linear combinations of the columns of a matrix, we get what’s called a column space. We can now go

back to the equation Ax = b where A is not necessarily square anymore and say that this equation can be solved for any

b that is in the column space of A. On the other hand, the nullspace of A, N(A), is the space spanned by the vectors

x for which Ax = 0. For an m × n matrix, the column space is in Rm while the nullspace is in Rn. It turns out that

for all the vectors x ∈ N(A) we have Ax = 0. So we can also define the nullspace as the collection of all vectors x for

which Ax = 0. It is easy to show that the nullspace is indeed a subspace. The obvious extension is now to ask whether

the collection of all x for which Ax equals some non-zero b is also a subspace. The simple answer is no, because the zero

vector is not one of them and a subspace must contain the zero vector.

1.7 Solving Ax = 0: Pivot Variables

We can apply what we learned about elimination to any rectangular matrix, and write the matrix in what’s called the

echelon form. Take for example the equation Ax = 0 where

A =

1 2 2 2

2 4 6 8

3 6 8 10

 →
 1 2 2 2

0 0 2 4

0 0 0 0

 = U

Notice that A has now two pivots. We call the number of pivots of the matrix A written in echelon form the rank

of A. The solution x to the above equation can be found by making some arbitrary choices for the free variables and

determining the value of the pivot variables. But notice that A2 = 2A1. This tells you that (−2, 1, 0, 0)T ∈ N(A) (so

every multiple of it is also a solution). Since the free variables here had the values 0 and 1, then let them be 1 and 0 now

and you get (−2, 0, 2, 1)T ∈ N(A). So the nullspace of A is any linear combination of the two vectors given above.

Similar to the echelon form, we also have the reduced echelon form which has zeros above as well as below the

pivots. For matrix A we have (after making the pivots equal 1)

R =

 1 2 0 −2

0 0 1 2

0 0 0 0


So now we can find the solutions to Rx = 0. But notice that the solutions we found from Ux = 0 are already apparent

by looking at the matrix R. By switching the order of the columns in R so that the pivot columns come first followed by

the free columns we can represent R with the general form

R =

(
I F

0 0

)
which shows that R has rank(A) = r pivot columns, r pivot rows, and n−r free columns. We want to create a nullspace

matrix, i.e. a matrix N such that RN = 0. It turns out that N is just the matrix (−F I)T (note that the two identity

matrices in R = (I F) and N = (−F I)T are not necessarily of the same size; I in the first equation is has a size equal to

the number of rows of F and I in the second equation has a size equal to the number of columns of F. Notice that we

can write xpivot = −Fxfree because

Rx =
(
I F

)(xpivot

xfree

)
= 0
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We leave it up to you to demonstrate that if the matrix A was the inverse of the matrix given above, we would have

A =


1 2 3

2 4 6

2 6 8

2 8 10

 ⇒ U =


1 2 3

0 2 2

0 0 0

0 0 0

 ⇒ R =


1 0 1

0 1 1

0 0 0

0 0 0


and we can see that rank(A) = 2 (which leads us to the conjecture rank(A) = rank(AT )). Furthermore, from noticing

that A3 = A1 + A2 we can quickly expect N(A) = c(−1,−1, 1)T which from looking at R is nothing but c(−F I)T for

some c ∈ R.

1.8 Solving Ax = b: Row Reduced Form R

We are finally at the point of finding a sweeping solution to the linear equation Ax = b. We do elimination on the

augmented matrix (Ab) to get1 2 2 2 | b1

2 4 6 8 | b2

3 6 8 10 | b3

 →
1 2 2 2 | b1

0 0 2 4 | b2 − 2b3

0 0 0 0 | b3 − b2 − b1


where the last equation gives b3 − b2 − b1 = 0, which is the main condition for solvability. This condition goes hand

in hand with the fact that A3 −A2 −A1 = 0. Earlier we learned that for Ax = b to be solvable, then b must be in

the column space of A, C(A). Now we know that if a combination of the rows of A gives the zero row, then the same

combination of b must give zero.

In our quest for a complete solution to Ax = b we can first find a particular solution by setting all free variables

equal to zero and solving for the pivot variables. For the above case we have x2 = x4 = 0 leaving us with x1 + 2x3 = 1

and 2x3 = 3 which gives x1 = −2 and x3 = 3/2. The complete solution will then consist of this particular solution,

plus any solution out of the nullspace, in short x = xp + xn. This is because summing Axp = b and Axn = 0 gives

A(xp + xn) = b. For the above case we have

x = xp + xn =


−2

0

3/2

0

+ c1


−2

1

0

0

+ c2


−2

0

2

1

 .

For an m×n matrix A of rank r so far we now that r ≤ m and r ≤ n. When r = n < m we say A is full column rank.

In this case we have no free variables, i.e. N(A) = 0 and hence the solution to Ax = b is the unique solution xp (if there

is one, i.e. if b ∈ C(A)). In other words we have either zero or one solution. When r = m < n we call A full row rank,

i.e. we have m pivots and we can solve Ax = b for every b, because we are left with n −m = n − r free variables. In

other words, we have infinitely many solutions. When r < m and r < n, we have either no solutions or infinitely many of

them. When r = n = m we have a square matrix that’s full rank, is invertible and whose reduced echelon form is just

I. In this case, since the r = m then we can solve for every b and since r = n then there’s a unique solution.

1.9 Independence, Basis, and Dimension

Any set of vectors where at least one is the zero vector is linearly dependent. As we learned before, if v1, . . . ,vn are the

columns of A then they are independent when N(A) = 0, i.e. rank(A) = n. The rank of a matrix A was previously

defined as the number of pivot columns in A; it can now be described as the dimension of the column space of A, C(A),

which is the number of vectors required to span C(A), also called bases. Moreover, the dimensions of the nullspace of A

is the number of free variables.

1.10 The Four Fundamental Subspaces

The four fundamental subspaces are (1) the column space, C(A), (2) the nullspace, N(A), (3) the row space (all the

combinations of the columns of AT , C(AT ), and (4) the nullspace of AT , N(AT ) also called the left nullspace of A.
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It should be obvious that for an m× n matrix A, C(A) ∈ Rm, N(A) ∈ Rn and vice versa for AT . Of interest is to find

a systematic way of constructing a basis for each of those spaces. Starting with C(A), we could simply use the pivot

columns of A as a basis for it and conclude dim(C(A)) = rank(A) = r. It turns out that dim(C(AT )) = rank(A) = r

as well. For N(A) we can use the special solutions we obtained by choosing the free variables as the basis, and we have

n− r of them, so dim(N(A)) = n− r. We will expand on these basic results, but let’s start by showing you an example

of how row operation does not preserve the column space:

A =

1 2 3 1

1 1 2 1

1 2 3 1

 → R =

1 0 1 1

0 1 1 0

0 0 0 0

 =

(
I F

0 0

)

Note that in the above example C(A) 6= C(R), but we argue that A and R have the same row space, because R is

obtained by performing row operations on A and so we stay in the basis of A. Moreover, a basis for the row space of R

(and hence A) is the first two rows of R.

Now let’s study N(AT ), i.e. all vectors y for which ATy = 0, which we call the left nullspace because we can rewrite

yTA = 0. Remember how we used Gauss-Jordan to find an inverse of a square matrix by augmenting the identity

matrix to it and finding the reduced row echelon form. We will do a similar thing here, except A is m × n, and we get

(A I) → (R E) where E is a matrix that contains a record of what we did to get R, i.e. EA = R. To find E for the

previous example, just start with the identity matrix and make the changes that represent the row operations:1 0 0

0 1 0

0 0 1

→
 1 0 0

−1 1 0

−1 0 1

→
 1 0 0

1 −1 0

−1 0 1

→
−1 2 0

1 −1 0

−1 0 1

 = E

We can use the matrix E to find the basis for the left nullspace of A and show that dim(N(AT )) = m − r. Note that

the last row of E corresponds to the combination of the rows of A that gives me the zero vector, so E3 is the basis for

the left nullspace. So the row space and the nullspace are in Rn and their dimensions add up to n, and the

column space and the left nullspace are in Rm and their dimensions add up to m.

1.11 Matrix Spaces; Rank 1; Small World Graphs

We can extend what we learned about vector spaces by thinking of a vector space as being all 3 × 3 matrices. Note

that we can add them and multiply them by constants, so they are a vector space (the fact that we can multiply them

too is irrelevant for now). So now examples of subspaces are upper triangular matrices, symmetric matrices, or their

intersection, i.e. diagonal matrices. We can also talk about bases for these subspaces. For example, diagonal matrices

have three bases and hence have a dimension of 3. So we want to know what the bases are for these subspaces. Let’s first

find a basis for M , the vector space consisting of all 3× 3 matrices. A basis for M could look like1 0 0

0 0 0

0 0 0

 ,

0 1 0

0 0 0

0 0 0

 , . . . ,

0 0 0

0 0 0

0 0 1


of which we have 9, i.e. dim(M) = 9. For symmetric matrices S, the dimension is 6, so is the dimension of upper-triangular

matrices, U . For diagonal matrices, S ∩ U , we have a dimension of 3. Note that S ∪ U is not a subspace to begin with.

On the other hand S + U = {s+ u|s ∈ S and u ∈ U} gives me M again, and hence dim(S + U) = 9. So we note that

dim(S) + dim(U) = dim(S + U) + dim(S ∩ U).

Let’s look at another example. Consider the differential equation d2y/dx2 + y = 0. The two solutions that we can

think of are cosx and sinx and all the other solutions are linear combinations of the two. So think of the nullspace as

being the solution to the above equation, and cosx and sinx as the bases for the nullspace. Let’s come back to matrices

and think again about the rank of a matrix. Consider the matrix A given by(
1 4 5

2 8 10

)
=

(
1

2

)(
1 4 5

)
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where it should be obvious that dim(C(A)) = 1 which as we learned must also equal dim(C(AT )) = rank(A). But is

there a more obvious way to see that? The answer lies in writing A as the multiplication shown on the right-hand side

above, which leads us to say that every matrix of rank 1 can be thought of as some column times some row, i.e. A = uvT

where rank(A) = 1. We can therefore think of rank 1 matrices as the building block for every matrix, e.g. a rank 4 matrix

can be written as the sum of 4 rank 1 matrices. Note that the set consisting of all matrices of rank 2 for example is not a

subspace. Consider another example now: let’s say we’re interested in the subspace consisting of all vectors v ∈ R4 such

that the elements of v sum to 0 (check that it is in fact a subspace). We want to know the dimension of this subspace.

One way to think of it is that since the four combinations are not linearly independent, then the dimension must be 3.

To confirm this think of a matrix A whose nullspace is the above subspace. Then A must be the matrix with 4 columns

whose elements are all 1. Since rank(A) = 1 then we have rank(N(A)) = 4− 1 = 3. We could find a basis for N(A) by

setting the values for the free variables and then finding the pivot variable. A basis could be
−1

1

0

0

 ,


−1

0

1

0

 ,


−1

0

0

1

 .

If A consists of only one column, then C(A) = R and N(AT ) = 0. Note how n = 4 = 3 + 1 and m = 1 = 1 + 0 and

everything works out.

1.12 Graphs, Networks, Incidence Matrices

Consider a graph whose nodes are connected by directed edges which we have numbered. We can represent this graph

with a matrix, called an incidence matrix by letting a given row of the matrix represent an edge and every column a

node. The entry of the matrix consist of 1, 0, and −1 only with aij equals 1 when edge i goes into node j, 0 when edge i

does not connect to node j, and −1 when edge i leaves node j. Take the following graph and corresponding matrix:

2

1

4

3

1

2

3

4

5

A =


−1 1 0 0

0 −1 1 0

−1 0 1 0

−1 0 0 1

0 0 −1 1


If we stop at the third row and take a look at the matrix we would notice that the rows are not independent anymore,

which on the graph corresponds to having a loop. This is an example of a sparse matrix, because it has a large number of

zeros (which gets larger the larger the matrix gets). Let’s first see if the columns of A are independent, i.e. if the nullspace

is just the zero vector, by studying the equation Ax = 0. We call x = (x1, x2, x3, x4) the potentials at the nodes,

and hence Ax (given the structure of A) gives me the potential differences across the edges. The nullspace is where

the potential differences are all zero. It’s easy to see that the nullspace consists of c(1, 1, 1, 1)T and hence rank(A) = 3.

It follows that dim(AT ) = 5 − 3 = 2 and for ATy = 0 we call y = (y1, y2, y3, y4, y5) the currents on edges (where

the currents are the directions on the edges). The relation between current and potential difference is called Ohm’s

law, which says that the current on an edge is some number times the potential drop. It’s a change in potential that

makes a current happen and it’s Ohm’s law that says how much current happens. Looking at the rows of ATy you’ll

see that each row represents total flow on its corresponding node. So instead of using row reduction, we can look at the

graph to find the nullspace of AT . Two bases for that nullspace would be (1, 1,−1, 0, 0) and (0, 0, 1,−1, 1), which are just

currents around some loop (any loop works). You find them by choosing a loop, assigning a direction to it (clockwise
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or counter-clockwise), and assigning the value of 1 to yi when it flows in that direction, -1 when it flows in the opposite

direction, and 0 when it isn’t part of the loop. Note how the sum of the two bases above gives us (1, 1, 0,−1, 1), which

is the current around the big loop. Another interesting observation is that we can use the first basis to find the pivot

columns of AT , i.e. the independent rows of A. I expect 3 pivot columns, since rank(A) = 3, so I can pick the first two

columns and the forth one. On the graph, this selection corresponds to a subgraph without a loop, also known as a tree.

Finally, from dim(N(AT )) = m− r you’ll notice that dim(N(AT )) is the number of loops, m = 5 is the number of edges,

and r = n− 1 where n = 4 is the number of nodes. This gives us a count that applies to every graph

# nodes−# edges + # loops = 1

called Euler’s formula. We used linear algebra to prove Euler’s formula, which otherwise would have required a

topological proof.

1.13 Quiz 1 Review

So the row space and the nullspace are in Rn and their dimensions add up to n, and the column space and the left

nullspace are in Rm and their dimensions add up to m. An important fact to remember is that N(A) = 0 if and only if

N(AT ) = 0.

Consider an example now: Let B = CA where C is an invertible square matrix that’s m × m, and B and A are

m×n. We’re interested in N(B) ∈ Rn. Notice that since C is invertible, then N(CA) = N(A), i.e. multiplying by an

invertible matrix can’t change the nullspace.

1.14 Orthogonal Vectors and Subspaces

The illustration below is a summary of what we learned so far, as well as an insight into a new topic, namely how the row

space and nullspace are orthogonal to each other, as are the column space and left nullspace. Let’s first see why it is that

x and y are orthogonal if and only if xTy = 0. We can show this using the fact that ||x||2+ ||y||2 = ||x+y||2 and rewriting

it as xTx + yTy = (x + y)T (x + y) and expanding on the right side of the equation to get 0 = xTy + yTx = 2xTy. So

the zero vector is orthogonal to any vector. For subspaces, orthogonality means that every vector in one subspace must

be orthogonal to every vector in the other subspace. From the equation Ax = 0, it is easy to see why the row space of A

is orthogonal to x ∈ N(A). The properties of orthogonality combined with the fact that the dimensions of the row space

and the nullspace always add up to n make these two spaces orthogonal complements. This amazing result can be

considered part 1 of the fundamental theorem of linear algebra.

Consider now the problem of ”solving” the equation Ax = b for when m > n and there’s no solution, e.g. b has

measurement ”error” or residuals. So by ”solving” it we mean finding the best solution. It is obvious that elimination

will fail us. We know the matrix ATA is a square and symmetric matrix. So let’s have ATAx̂ = ATb. We changed x to

x̂ because we think of x as the solution to the original equation if it existed (but probably didn’t) and I’m hoping that x̂

does exist. We can’t say that ATA is always invertible. Here’s an example,(
1 1 1

3 3 3

)1 3

1 3

1 3

 =

(
1 9

3 27

)

and since rank(A) = 1, we cannot expect rank(ATA) to be any higher than 1. This leads to the important result that

N(ATA) = N(A) and rank(ATA) = rank(A). So ATA is invertible exactly if A has independent columns.
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1.15 Projections onto Subspaces

When you project a vector b on a vector a you can think of the difference between b and its projection p as an ”error”

e = b−p. We can let p = xa and write the key equation aT (b−xa) = 0 which gives xaTa = aTb. So we have p = aa·b
a·a .

Note that if you multiply b by some number then its new projection is also the old projection times the same number. So

the projection is really just some matrix P such that proj b = Pb. It’s easy to see that P = aaT

aT a
where the denominator

is a scalar, but the numerator is a matrix since it is obtained by multiplying a column by a row. Note how the column

space of P is the line through a and the rank of P is 1. Furthermore, P is symmetric, which is a key property, and when

we do the projection twice we stay put the second time, i.e. P2 = P (P is idempotent). Let’s now step back a little and

ask why we should project in the first place. The reason has to do once before with not being able to solve the equation

Ax = b and hence looking for the best solution. Think

Imagine now trying to project b on a plane spanned by the vectors a1 and a2, i.e. the column space of the matrix

A = (a1 a2). Since p is on the plane, then I can write it as p = x1a1+x2a2 = Ax̂. So we want x̂ such that p = Ax̂. I also

know that e = b−p = b−Ax̂ is perpendicular to the plane, and hence perpendicular to both a1 and a2. So I can say that

aT1 (b −Ax̂) = 0 and aT2 (b −Ax̂) = 0, which can be combined into the matrix multiplication AT (b −Ax̂) = ATe = 0.

So e is in the nullspace of AT , i.e. e is perpendicular to C(A). Let’s now rewrite the equation as ATAx̂ = ATb, which

gives x̂ = (ATA)−1ATb and hence p = A(ATA)−1ATb = Pb. Notice the similarity between A(ATA)−1AT and aaT

aT a
.

Note that because A is not a square and invertible matrix, we can’t just write (ATA)−1 = A−1(AT )−1, and I can see

how doing that would mess things up. But if A were a square and invertible matrix, then b would be in the column space

of A and so its projection would be itself, i.e. P = I. So it still works. It’s easy to see that PT = P (remember that the

inverse of a symmetric matrix is also symmetric). It’s also pretty easy to check that P2 = P.

1.16 Projection Matrices and Least Squares

So far, we were able to turn the problem of not being able to solve Ax = b into one of finding its best solution by using

the equation ATAx̂ = ATb called the normal equations. In the extreme cases, when b is in the column space of A

then we get PbA(ATA)−1ATAx = Ax = b, and when b is perpendicular to the column space of A, i.e. b is in the

nullspace of AT , then we get Pb = A(ATA)−1ATb = 0 because the last two terms give zero. We can thus decompose

b into its orthogonal projections p = Pb and e = (I −P)b and get b = p + e. You can check to see that e is not only

perpendicular to p, but perpendicular to all of the vectors in the column space of A. Alternatively, we can look at least

squares as essentially the problem of minimizing the ||Ax−b||2 = ||e||2. At this point we could use calculus to solve this

minimization problem, by taking the partial derivatives and setting them equal to zero. But the answer we would get is

just the answer that linear algebra gave us, namely ATAx̂ = ATb.

Remember that we said that if A had independent columns, then ATA is invertible. This is the essential assumption

that allowed us to find the least squares solution using linear algebra. We want to know what to do if ATA is not

invertible. Suppose ATAx = 0, then we want to show that x must be zero, i.e. the nullspace of ATA is 0 which means

it’s invertible. An idea would be to consider xTATAx = 0 = (Ax)TAx, which means ||Ax|| = 0 and hence Ax = 0. But

since A has independent columns, we conclude x = 0.

1.17 Orthogonal Matrices and Gram-Schmidt

The vectors q1, . . . ,qn are orthonormal if qiqj = 1 when i = j and qiqj = 0 otherwise. A matrix Q whose columns are

orthonormal has the property that QTQ = I, which is just an extension of the definition of orthonormality given above.

When Q is a square matrix, we conventionally call it an orthogonal matrix, and we have QT = Q−1 (this was also a

property of permutation matrices and permutation matrices are a type of orthogonal matrices). Two good examples of

Q is given by (
cos θ − sin θ

sin θ cos θ

)
,

1

2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 and
1

3

1 −2

2 −1

2 2

 .

Orthogonal matrices consisting of 1s and −1s such as the one above are of special interest. But to this day we don’t have

a way of knowing if for a given size n there exists such a matrix or not. Suppose we wanted to project onto Q’s column
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space, then the projection matrix is given by P = Q(QTQ)−1QT = QQT . So our calculations are greatly simplified

when using orthogonal matrices. Note that QQT = I if Q is square, because then I would be projecting onto the whole

space. Also note that (QQT )(QQT ) = QQT . Our normal equations are now given by QTQx̂ = x̂ = QTb leading to a

very important result (think about how to interpret the coefficients when for a given coding scheme represented by an

orthogonal matrix).

We built orthonormal vectors using Gram-Schmidt. Assume a and b are independent. We want to get orthogonal

vectors v and w from them, and make them orthonormal by dividing by their respective lengths. Just let a = v and

w = b− aTb
aT a

a, so we should have vTw = aT (b− aTb
aT a

a) which is obviously zero. So now if you threw in a third vector c,

then we let y = c− aT c
aT a

a− bT c
bTb

b and we now have three orthogonal vectors. So now we can write the matrix Q whose

columns are v/||v||, w/||w||, and y/||y||. We put the three orthonormal vectors together in the matrix Q to emphasize

the fact that Q and A = (a b c) have the same column space. So we can summarize Gram-Schmidt into A = QR.

Because of the way Gram-Schmidt works, R turns out to be an upper-triangular matrix. So we have now learned about

two famous factorizations, A = LU and now A = QR.

1.18 Properties of Determinants

Three properties define the determinant: (1) det(I) = 1, (2) exchanging rows reverses the sign of the determinant, so the

determinant of permutation matrices is either 1 (even number of row exchanges) or -1 (odd number of row exchanges),

(3) the determinant is a linear function for each row, e.g.∣∣∣∣∣ ta tb

c d

∣∣∣∣∣ = t

∣∣∣∣∣ a b

c d

∣∣∣∣∣ and

∣∣∣∣∣ a+ s b+ r

c d

∣∣∣∣∣ =

∣∣∣∣∣ a b

c d

∣∣∣∣∣+

∣∣∣∣∣ s r

c d

∣∣∣∣∣ .
Note that we are not saying det(A + B) = det(A) + det(B). From these three properties, we want to learn all there

is about determinants. For example, if A has two equal rows then det(A) = 0 derives from property (2). Subtract a

multiple of some row from another row and the determinant stays the same, which derives from property (2) and (3)

combined. A row of zeros leads to a determinant of zero. The determinant of a triangular matrix is just the product of

the pivots. This tells me that the quickest way to find a determinant is by doing row reduction first (where we have to

factor out a −1 every time we do a row exchange). The reason for this last property is because a triangular matrix can

be turned into a diagonal matrix D using further row reduction and det(D) = d1d2 · · · dn det(I). We can use this last

property to conclude that when A is invertible it has all its pivots (non-zero) and hence its determinant is non-zero. We

can also use this property and row reduction to show that det( a bc d ) = ad − bc. We also have det(AB) = det(A) det(B)

which tells me that det(A−1) = 1/det(A). (Incidentally you can use this to show that the inverse of a diagonal matrix

is obtained by taking the reciprocals of its diagonal elements.) We also have det(A2) = (det(A))2, det(2A) = 2n det(A),

and det(AT ) = det(A), which leads to saying that everything we said about rows can now also apply to columns of the

matrix whose determinant we’re taking. One key fact that determinants bring with them is the concept of odd and even

permutations, e.g. if you can obtain some matrix after 7 row exchanges then you can only obtain that matrix after an

odd number of exchanges.

1.19 Determinant Formulas and Cofactors

An alternative way of finding det( a bc d ) is by writing it in the following form, noting that matrices with a row (or column)

of zero have zero determinant. Using properties (2) and (3) from the previous section, I can then find the determinant of

the remaining matrices. ∣∣∣∣∣ a b

c d

∣∣∣∣∣ =

∣∣∣∣∣ a 0

c 0

∣∣∣∣∣+

∣∣∣∣∣ a 0

0 d

∣∣∣∣∣+

∣∣∣∣∣ 0 b

c 0

∣∣∣∣∣+

∣∣∣∣∣ 0 b

0 d

∣∣∣∣∣ = ad− bc

Imagine doing the same to a 3 × 3 matrix, i.e. splitting it into 27 summands. But many of those pieces will have zero

determinant, so I want to know which won’t, and call them survivors. You’ll notice that the survivors of a 3× 3 matrix

are the matrix containing the diagonal elements and the following permutations of it:∣∣∣∣∣∣∣
a11 0 0

0 a22 0

0 0 a33

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
a11 0 0

0 0 a23

0 a32 0

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣

0 a12 0

a21 0 0

0 0 a33

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣

0 a12 0

0 0 a23

a31 0 0

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣

0 0 a13

a21 0 0

0 a32 0

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣

0 0 a13

0 a22 0

a31 0 0

∣∣∣∣∣∣∣
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This is a more accurate image than the one in which we go down the diagonals and switch signs (that only works for 3×3

matrices). So for an n× n matrix, we can write its determinant as the sum of determinants of n! matrices. But now we

need a big formula, and that formula is

det(A) =
∑

n! terms

±a1αa2β · anω

where (α, β, . . . , ω) is some permutation of (1, 2, . . . , n). The ± depends on whether the permutation is odd or even. We

can see from the above formula for example why the determinant of I is just 1 or why the determinant of A and AT are

the same. We can use this big formula to find the determinant of the matrix given below
0 0 1 1

0 1 1 0

1 1 0 0

1 0 0 1

 →


0 0 1 1

0 1 1 0

1 1 0 0

1 0 0 1

 and


0 0 1 1

0 1 1 0

1 1 0 0

1 0 0 1


The first choice represents the permutation (4, 3, 2, 1), which is even and has a determinant of 1, and the second choice

represents the permutation (3, 2, 1, 4) which is odd and has a determinant of −1. All other terms have determinant zero.

So the determinant of the matrix is just zero. The least inventive way of thinking about the determinant is in terms of

cofactors of aij which is the determinant of the matrix whose ith row and jth column have been deleted, call it Āij , so

Cij = det(Āij). So the cofactor formula is

det(A) =

n∑
j=1

aijCij =

n∑
j=1

(−1)i+jaij det(Āij)

for all i = 1, 2, . . . , n (we could have expanded along a column instead). The cofactor method is a quick way to find

determinants if you combine it with row reduction. Try the cofactor method with a 2× 2 matrix to ensure it works.

1.20 Cramer’s Rule, Inverse Matrix, and Volume

Consider the beautiful identity ACT = det(A)I where C is the cofactor matrix, which is just the cofactor formula for

computing the determinant, because the ith row of A times the ith column of CT gives me det(A) and the ith row of A

times any other column of CT gives me zero. The latter is not obvious at first. The reason that second case is always

zero is because for example Ai times Cj for i 6= j is like taking the determinant of a matrix whose ith and jth rows are

identical. The identity gives us the formula A−1 = (det(A))−1CT which you can check using the 2× 2 matrix and sure

enough it works.

Going back to Ax = b gives me x = A−1b = (det(A))−1CTb. This leads me to Cramer’s rule: We can write

xi = det(Bi)/det(A), where Bi is the matrix A whose ith column was replaced with b. This should be obvious from

the multiplication CTb. Note how Cramer’s rule is disastrous in terms of time-consumption. Packages use the reduced

echelon method to find inverses and row reduction with back substitution to find x. It turns out that |det(A)| is the

volume of the parallelepiped created by the columns of A. This is obvious when A = I. The orthogonal matrix Q can

thus be thought of the cube corresponding to I just rotated in some direction. The way to show that det(Q) = 1 is by

using the fact that QTQ = I. You can use the geometrical representation of the determinant to gain another insight into

the three properties of the determinant: Properties (1) and (2) are follow easily; it’s obvious that multiplying one row

(or column) by a constant does the same to the volume. The last property to check is that of linearity in one row. We’ll

leave that one to you. Here’s a little side note: If you have a triangle with the coordinates given by (xi, yi) i = 1, 2, 3, you

can find the area of the triangle by solving A = 1
2 det(T) where T is the matrix with the rows (xi, yi, 1).

1.21 Eigenvalues and Eigenvectors

We’re looking for the particular vectors x now (called eigenvectors) for which Ax = λx for some real or complex λ, called

eigenvalue. Obviously if A is singular λ = 0 is overdue. Let’s first ask ourselves what the eigenvectors and eigenvalues

of the projection matrix would be. Since b and Pb are usually in different directions, b is usually not an eigenvector,

unless of course b was in the plane spanned by the projection matrix in the first place, in which case we have λ = 1. So

imagine working in 3D, we take two linearly independent vectors from the projection plane as eigenvectors. We now ask
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if there is a third one that is not on the plane, because then we would have a basis for 3D. The answer is any x that is

perpendicular to the plane, and we have λ = 0. So for a projection matrix the eigenvalues are 1 and 0. Consider now the

permutation matrix ( 0 1
1 0 ). Two of its eigenvalues are (1, 1)T and (−1, 1)T (they are not perpendicular by accident) with

respective eigenvalues 1 and −1. It turns out n×n matrices will have n eigenvalues, and sometimes for large matrices are

not easy to find. But one neat property is that the trace of a matrix A is equal to the sum of its eigenvalues. Go back to

the last example to see how that’s the case.

It’s easy to see that the solution x can be derived from the fact that (A − λI)x = 0, i.e. A − λI is singular or

det(A − λI) = 0. We call this last equation the characteristic equation. So we begin by finding λ and then use

elimination to find the eigenvectors x. Let A = ( 3 1
1 3 ) and you get eigenvalues 2 and 4 which give eigenvectors (1, 1)T and

(−1, 1)T (or of course any multiple of them). Note how P = ( 0 1
1 0 ) and A = ( 3 1

1 3 ) have the same eigenvectors and their

eigenvalues for A are just the eigenvalues of P with 3 added to each. Furthermore, notice how we have A = 3I + P. This

makes sense given the new equation (P + 3I)x = λx. Things don’t work out so great when you add two matrices A and

B. It does not follow that you can just add up their respective eigenvalues to get the eigenvalues of A + B. The reason

is because their eigenvectors might differ, otherwise we could write Ax = λx and Bx = αx then (A + B)x = (λ + α)x.

Now consider the (orthogonal) 90-deg. rotation matrix Q = ( 0 −1
1 0 ) (just the sines and cosines of π/2). We already

know λ1 = −λ2 and det(Q) = 1 = λ1λ2. We expect something to go wrong, because no vector can come out parallel

to itself after rotating it by 90 degrees. Alternatively, we can look at det(Q − λI) = λ2 + 1, whose roots are complex,

i.e. λ = ±i. Note how the two eigenvalues are complex conjugates of each other. The more we move away from

symmetric matrices, the likelier we are to get imaginary eigenvalues. In this specific case Q is antisymmetric,

i.e. QT = −Q, so we have an extreme case. Here’s another scenario: suppose we have the matrix A = ( 3 1
0 3 ). Because A

is triangular, then its eigenvalues are just the diagonal values (you can check it using the characteristic equation). The

problem with this matrix is its eigenvectors. From A−λI = ( 0 1
0 0 ) we have (1, 0)T as one eigenvector. The problem is that

I can’t find another eigenvector, i.e. one that independent from the first one. So repeated eigenvalues open the possibility

of a shortage of eigenvectors.

1.22 Diagonalization and Powers of A

Once we found the eigenvalues and eigenvectors of a matrix A we can proceed to diagonalize A by writing it in the form

S−1AS = D where S is the matrix of eigenvectors (in the columns). Suppose I have n independent eigenvectors. Then the

product AS is just equal to the matrix whose columns are λixi, i = 1, 2, . . . , n. So I can represent the multiplication with

AS = SD where D is just a diagonal matrix containing the eigenvalues. The fact that the eigenvectors are independent

(which is true for most matrices) allows us now to invert S to get D = S−1AS or A = SDS−1. Let’s say we wanted to

know the eigenvalues and eigenvectors of A2 when Ax = λx. A simple calculation shows that A2x = λAx = λ2x. But

I can also use the diagonalization formula to show this: A2 = SDS−1SDS−1 = SD2S−1. So the eigenvalues of Ak are

just the eigenvalues of A raised to the k. So eigenvalues and eigenvectors are a great way to understand and calculate

the powers of a matrix. An interesting byproduct of the above result is that Ak → 0 as k →∞ if and only if |λi| < 1 for

all i = 1, 2, . . . , n (once again assuming independent eigenvectors).

A matrix A is sure to have n independent eigenvectors (and be diagonalizable) if all its eigenvalues are distinct.

When the eigenvalues are not distinct, we may or may not have independent eigenvectors. For example, the eigenvalues

of I are all 1, but there’s no shortage of eigenvectors. So a diagonal matrix already has its eigenvalues sitting there.

Triangular matrices are more problematic. Consider now the system of first order difference equations given by

uk+1 = Auk, starting with u0. It follows that uk = Aku0. To really solve this we start by writing u0 as a combination

of the eigenvectors c1x1 + . . .+ cnxn. Notice how Au0 = c1λ1x1 + . . .+ cnλnxn and Aku0 just has the eigenvalues on the

right side raised to the power of k. In short, Aku0 = DkSc. We’ll use the Fibonacci sequence as an example, given

by 0, 1, 1, 2, 3, 5, . . .. So Fn+2 = Fn+1 + Fn. We are also interested in knowing how fast this sequence increases, and the

answer lies in eigenvalues. Let’s first artificially make this into a system by adding the equation Fk+1 = Fk+1. Now we

have uk = (Fk+1, Fk)T and uk+1 = ( 1 1
1 0 )uk. The eigenvalues are given by 1

2 (1 ±
√

5). One eigenvalue is greater than 1

and one is less than 1. So we have for example F100 ≈ c1( 1+
√
5

2 )100 for some c1 ∈ R, which gives us an idea about the

growth rate of the sequence. Furthermore, to complete the problem we now find the eigenvectors which turn out to be

x1 = (λ1, 1)T and x2 = (λ2, 1)T . Given u0 = (1, 0)T I can now find c1 and c2 such that c1x1 + c2x2 = u0.
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1.23 Differential Equations and exp(At)

Consider the differential equation given by du1

dt = −u1 + 2u2 and du2

dt = u1− 2u2 with the initial condition u(0) = (1, 0)T .

Since A = (−1 2
1 −2 ) is singular I expect λ1 = 0 which makes λ2 = −3. So x1 is in the nullspace of A and we have x1 = (2, 1)T

and x2 is in the nullspace of A + 3I = ( 2 2
1 1 ) so we have x2 = (1,−1)T . The solution will be u(t) = c1e

λ1tx1 + c2e
λ2tx2

(contrast that to the solution to the difference equation uk+1 = Auk, which was c1λ
k
1x1 + c2λ

k
2x2) and I can see that I

already know a lot about the kind of solution I have just from looking at my eigenvalues; the fact that one eigenvalue

is zero tells me I have some sort of steady state and the fact that the other one is negative says that as t increases it

becomes less and less relevant. Solving the above equation for t = 0 gives me c1 = 1/3 and c2 = 1/3, which derive from

the equation Sc = u(0) where S is the matrix whose columns are the eigenvectors. So the steady state u(∞) = 1
3 (2, 1)T .

In general we have stability, i.e. u(t) → 0 which requires negative eigenvalues (or negative real parts for when λ is

complex). We have a steady state when λ1 = 0 and λ2 has negative real part. We blow up when either eigenvalues have

positive real parts. Both eigenvalues of a 2× 2 matrix A are negative when trace(A) < 0 and det(A) > 0.

Let’s now write the solution to du
dt = Au in terms of S and D where u = Sv. The equation becomes Sdv

dt = ASv

or dv
dt = S−1ASv = Dv. So we get v(t) = eDtv(0) and hence u(t) = SeDtS−1u(0). So now we have to define what

we mean by e raised to some matrix. We have eAt = I + At + 1
2 (At)2 + . . . + 1

n! (At)
n. (Incidentally we also have

(I−At)−1 = I+At+(At)2 + . . ., which will blow up unless the eigenvalues of At are below 1.) We can use this definition

to show that we get u(t) = SeDtS−1u(0) is equal to eAtu(0), by writing

eAt = SS−1 + SDS−1t+
1

2
SD2S−1t2 + . . . = SeDtS−1.

But unlike the original formula which always works, note that the above formula works only as long as A is diagonalizable.

Finally, we’re left to defining the exponential of a diagonal matrix, eDt, and we define that as the diagonal matrix whose

diagonal elements are eλit.

For a second order differential equation y′′ + by′ + Ky = 0 can be solved using a first order equation by letting

u = (y′, y)T and hence u′ = ( y
′′

y′
) = (−b −K1 0 )u. We can extend this to any nth order differential equation. This is

amazing.

1.24 Markov Matrices; Fourier Series

We’re back to the equation uk+1 = Auk except now A is a Markov matrix. Markov matrices are matrices whose entries

are all positive or zero and whose columns sum to 1. The second property ensures that a Markov matrix will have an

eigenvalue of λ1 = 1 (signaling a steady state). All other eigenvalues are less than 1 in absolute value. Furthermore, the

eigenvector x1 has only positive elements. The matrix A− I has columns that add up to zero and is singular because the

rows are dependent, i.e. the vector (1, 1, . . . , 1)T is in the left nullspace of A. It follows that x1 is in the nullspace of A. The

eigenvalues of A and AT are the same. This last piece follows because det(A−λI) = det(A−λI)T = det(AT−λI) = 0.

Here’s an example: Let A = ( .9 .2.1 .8 ). We have λ1 = 1 and λ2 = .7 which give x1 = (2, 1)T (so in the steady state we have

2/3 and 1/3) and x2 = (−1, 1)T . So we have uk = c1(1k)( 2
1 ) + c2(.7k)(−11 ). We can find c1 and c2 given some initial

condition.

Let’s now talk about projections with orthonormal bases q1, . . . ,qn. For some vector v = x1q1 + . . . + xnqn we

want to find a way to isolate x1: Take the dot product of everything with q1 and get qT1 v = x1. In matrix notation

we have v = Qx and hence x = Q−1v = QTv. This is what Fourier series are built on. Fourier series look like

f(x) = a0+a1 cosx+b1 sinx+a2 cos 2x+b2 cos 3x+. . .. Note that we are now working with an infinite dimension vector

space. We still need to define what the dot product of functions are. For functions f and g we have< f, g >=
∫
f(x)g(x)dx

with the integration occurring on the interval [0, 2π]. It’s easy to check that for example
∫ 2π

0
sinx cosx dx = 0 and the

same is true for all the other trig functions. Now we need to find the constants. We begin by setting a0 equal to the

average of f . To find a1 we multiply the whole thing by cosx and integrate:∫ 2π

0

f(x) cosx dx = a1

∫ 2π

0

(cosx)2 dx = a1π

I can find all the other ai and bi in a similar fashion.
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1.25 Symmetric Matrices and Positive Definiteness

Symmetric matrices are the most important class of matrices. It turns out that real symmetric matrices have real

eigenvalues and their eigenvectors are (can be chosen to be) orthogonal and can hence be made orthonormal (proofs are

omitted). The equation A = SDS−1 (D is the diagonal matrix containing the eigenvalues) in the case of a symmetric

A can be written as A = QDQT where Q is an orthogonal matrix. This amazing factorization is one of the famous

theorems of linear algebra. We can expand the factorization as follows

A = QDQT =
(
q1 · · · qn

)
D


qT1
...

qTn

 = λ1q1q
T
1 + . . .+ λnqnqTn

where qiq
T
i is a projection matrix. So every symmetric matrix is a combination of mutually perpendicular

projection matrices. Now let’s find a way to determine if the real eigenvalues of a symmetric matrix are positive or

negative. It turns out the signs of the pivots are the same as the sign of the eigenvalues. So positive pivots have positive

eigenvalues and negative pivots negative ones. Remember that the product of the pivots give us the determinant, which

in turns equals the product of the eigenvalues.

If symmetric matrices are good, wait till you hear about symmetric positive definite matrices, i.e. matrices with

real and positive eigenvalues (and hence real and positive pivots). For a symmetric matrix to be positive definite, all its

sub-determinants must be positive.

1.26 Complex Matrices; Fast Fourier Transform

Let z ∈ Cn, then the length of z is not given by zT z anymore; instead we use z̄T z = |z1|2 + . . . + |zn|2, where z̄ is the

complex conjugate of z. This is just an extension of (a+ bi)(a− bi) = a2 + b2. We use the notation z̄T z = zHz to combine

both actions where the H stands for Hermitian. Similarly, if A is a complex matrix, then it is a symmetric matrix

when ĀT = A, so for example the matrix ( 2 3+i
3−i 7 ) is a symmetric complex matrix, also known as a Hermitian matrix.

To check that the complex vectors q1, . . . ,qn are orthonormal, then q̄Ti qj must be 1 when i = j and 0 otherwise. In other

words I must have Q̄TQ = QHQ = I. When dealing with complex matrices, we usually change the word symmetric with

Hermitian, and the word orthogonal matrix (orthonormal columns) with the word unitary. The most famous complex

matrix (that’s also unitary) is the Fourier matrix, given by

Fn =



1 1 1 · · · 1

1 W W 2 · · · Wn−1

1 W 2 W 4 · · · W 2(n−1)

...
...

1 W (n−1) W 2(n−1) · · · W (n−1)2


such that the ith row and jth column of Fn is given byW ij with i, j = 0, 1, . . . , n−1. W is given by ei2π/n = cos 2π

n +i sin 2π
n

and note that its nth power is 1, so for a given n, W is the complex number that lies on the unit circle when starting at

zero I go 2π/n counterclockwise, W 2 is when I go another 2π/n counterclockwise, and by the time I’m at Wn I’m back

to where I started. For example, when n = 4 we have W 4 = 1 and W = e2πi/4 = i, so the powers of W from 1 to 4 are i,

−1, −i, and 1. The matrix F4 is given by

F4 =


1 1 1 1

1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9

 =


1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i


You can check that the above matrix has orthogonal columns, and by dividing the matrix by 2 we turn it into an orthogonal

matrix (i.e. we make the columns orthonormal). So FH4 F4 = I. Why is this matrix so remarkable? It has to do with

how W 2
2n = Wn, which allows me to write Fn for some large n in terms of smaller n’s and thereby reduce the number of

computations. That’s why it’s considered a major leap in scientific computing. We’ll leave that for you to discover.
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1.27 Positive Definite Matrices and Minima

We’re back to real matrices now. A 2 × 2 matrix A = ( a bb c ) is positive definite (positive definite matrices are always

symmetric) if (1) it has positive eigenvalues, or (2) it has positive sub-determinants, i.e. a > 0 and ac− b2 > 0, or (3) it

has positive pivots, i.e. a > 0 and (ac − b2)/a > 0, or (4) if xTAx ≥ 0 with equality only for x = 0. The last definition

is the more conventional one; all the other definitions are more like tests. On the other hand, a matrix such as ( 2 6
6 20 ) is

called a positive semi-definite matrix; its determinant is zero and one of its eigenvalues is zero (while the other one is

positive), and it only has one pivot. The multiplication xTAx gives 2x21 + 12x1x2 + 20x22, called a quadratic form. I

want to know if for all x1, x2 ∈ R that quadratic form is positive or not. The matrix ( 2 6
6 7 ) is not positive definite and

it corresponding graph (x, y, f(x, y)) where f(x, y) = xTAx = 2x2 + 12xy + 7y2 goes up is some directions but down

in others. In other words, the graph has a saddle point (second derivative test fails). We will see later that the perfect

directions to look are the eigenvectors’ directions. The graph of a positive definite matrix on the other hand can only go

up as we move away from the origin. To generalize, for the function f(x1, . . . , xn) to have a minimum at some point, the

matrix of its second derivatives must be positive definite. In other words, the diagonal elements in the matrix below must

overwhelm the nondiagonal elements. (
fxx fxy

fyx fyy

)
If 2x21 + 12x1x2 + 20x22 is positive definite, then I should be able to complete the squares which gives 2(x+ 3y)2 + 2y2. So

for any fixed z = f(x, y) I get a cross section that is an ellipse. Notice how the multipliers in the equation we got from

completing the square, 2, 3, and 2, correspond to the first pivot, the multiplier that gives me the second pivot when I

do row reduction, and the second pivot respectively. In other words, ( 2 6
6 20 ) → ( 2 6

0 2 ) is what I get when I subtract three

times row 1 from row 2. I can now see why I needed positive pivots. This fantastic result allows me to extend my results

to n× n matrices, since I know how to perform row reduction on them. Consider the 3× 3 matrix given by

A =

 2 −1 0

−1 2 −1

0 −1 2


which has sub-determinants 2, 3, and 4. Since the product of pivots must give me the determinants, then the pivots are 2,
3
2 and 4

3 (because 2( 3
2 ) = 3 which is the second sub-determinant and 3( 4

3 ) = 4, the determinant). The equation xTAx is

given by f(x1, x2, x3) = 2x21 + 2x22 + 2x23−2x1x2−2x2x3 which we know is always positive and its cross section for a fixed

z = f(x1, x2, x3) is an ellipsoid. The ellipsoid in this case will have 3 axes, (the same way an ellipse has 2 axes), which

are given by the eigenvalues of the matrix A. The direction of those axes are given by the eigenvectors corresponding to

those eigenvalues. So I can imagine what the ellipsoid looks like by diagonalizing it into A = QDQT (which I can do

because A is symmetric).

1.28 Similar Matrices and Jordan Form

We might ask where positive definite matrices come from. From the properties of positive definite matrices, I can now

say that the inverse of positive definite matrices are also positive definite. The sum of positive definite matrices is also

positive definite, because xT (A + B)x > 0 unless x = 0. Now suppose A is an m× n rectangular matrix. Then we know

that ATA is square and symmetric. So how do we know if it’s positive definite (or at least positive semi-definite)? The

easiest way to answer this is by studying xTATAx which is just (Ax)T (Ax) = ||Ax||2 which is zero only when the vector

is zero. So for an m × n matrix as long as rank(A) = n the matrix ATA is always positive definite. In other

words, the nullspace of A must be 0.

Two square matrices A and B are similar if for some (invertible) matrix M we can write B = M−1AM. For

example, A is always similar to the matrix D because we have D = S−1AS. So matrices can be partitioned into

”families” with all matrices in a family being similar (and the nicest of them being the diagonal matrix D). This means

that similar matrices have the same eigenvalues. This is because from Ax = λx and B = M−1AM we have

M−1AMM−1x = BM−1 = λM−1x. So while the eigenvalues stay the same, the eigenvectors of B are obtained by

multiplying M−1 by the eigenvectors of A. The results above assumed that the eigenvalues are distinct (otherwise we

would not have all the eigenvectors required to diagonalize the matrix). Take now the case A = ( 4 0
0 4 ) has eigenvalues
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4 and 4. But this matrix is not similar to let’s say B = ( 4 0
1 4 ). In fact A is in one small family with the identity and

B has a larger family but it is the best of its family and has a form called the Jordan form. Jordan basically found

the best looking matrix in each family and completed diagonalization by coming as near to it as possible in cases where

repeated eigenvalues exist. Finding the Jordan form of a matrix requires that you know the exact eigenvalues and the

rank of the matrix. The matrix ( 5 1
−1 3 ) is in the same family as the matrix B above (because they have the same trace

and determinant) and hence it is not diagonalizable. You can read more on Jordan forms if you want.

1.29 Singular Value Decomposition

SVD is a central part of linear algebra and where everything in this course is generalized. It is the final and best

factorization of a matrix. A can be any matrix, and can be written as the product of two orthogonal matrices and a

diagonal one, given by A = UΣVT where Σ is the diagonal matrix. So far we learned that when A is a symmetric matrix

we can write A = SDS−1 where S is the matrix of eigenvectors, and when A is positive definite we have A = QDQT . So

one orthogonal matrix Q gets me my SVD in the (symmetric) positive definite case. Singular value decomposition

extends this to non-symmetric matrices and tries to do is take an orthonormal basis v1, . . . ,vk in the row space of A (by

using Gram-Schmitt for example) and have it go over to an orthogonal basis σ1u1, . . . , σkuk (ui’s are orthonormal) in the

column space of A where σiui = Avi for all i = 1, . . . , k. Usually, there’s no reason for us to believe that just because the

v’s are orthogonal then so will the u’s. But SVD gives us that guarantee. So we have AV = UΣ where V is the matrix

whose columns are the vi’s and U is the matrix whose columns are ui’s and Σ is the diagonal matrix containing σi as its

diagonal elements. How do we deal with nullspaces? Just add the bases for the null space to V and add some 0’s to the

diagonal elements of Σ. So we want obtain A = UΣV−1 and since V is orthogonal we simplify to A = UΣVT . From

the last equation we get

ATA = VΣTUTUΣVT = VΣT IΣVT = V(Σ2)VT

which shows that V is the vector containing the eigenvectors of ATA and σ2
1 , . . . , σ

2
n are its eigenvalues. So this gives me

my V vectors. Similarly, we can show that U is the matrix of eigenvectors for AAT .

For example, let A = ( 4 4
−3 3 ) and so ATA = ( 25 7

7 25 ). I should know by now that a matrix like this gives me two

eigenvectors: (1, 1)T and (1,−1)T , which I normalize by dividing by
√

2. It quickly becomes obvious that my eigenvalues

are 32 and 18. So I have

A =

(
4 4

−3 3

)
= U

(√
32 0

0
√

18

)(
1√
2

1√
2

1√
2
− 1√

2

)
Now we compute AAT which by chance turns out diagonal and is given by ( 32 0

0 18 ) and its eigenvectors are (1, 0)T and

(0, 1)T . (Notice how the eigenvalues stayed the same when you change the order of multiplication; this is always true.)

So we get U = ( 1 0
0 1 ).

Take an example of a singular matrix A = ( 4 3
8 6 ). The row space of A is all multiples of (4, 3)T and the unit vector of

that row space is v1 = (.8, .6)T and v2 will come from the nullspace of A. The column space of A is given by all multiples

of (4, 8)T and the unit vector of that space is u1 = 1√
5
(1, 2)T and u2 will come from the left nullspace of A. This will

give us U and V. We can find Σ the usual way but we already expect σ2 to be zero. In general, let v1, . . . ,vr be an

orthonormal basis for the row space of A and u1, . . . ,ur be an orthonormal basis for its column space. Then vr+1, . . . ,vn

and ur+1, . . . ,um will be an orthonormal basis for N(A) and N(AT ) respectively. Then we have Avi = σiui.

1.30 Linear Transformations and Their Matrices

In a way we are now restarting the course and taking a coordinate-free approach by using linear transformation. Think

for example of the transformation T : R2 → R2 that projects any vector in the 2 dimensional plane onto a vector in 2

dimensional plane. So the vector is the input and its projection the output, and I don’t need any coordinates (i.e. axes)

to get the output from the input. A transformation is linear if T (x + y) = T (x) + T (y) and T (cx) = cT (x). These two

conditions imply that T (0) = 0 and T (ax+by) = aT (x)+bT (y). For example, the transformation that shift any vector by

some vector v0 is not linear, neither is the transformation that takes any vector and produces its length. Projection and

rotation on the other hand are both linear transformations, so is T (v) = Av for some matrix A; if A = ( 1 0
0 −1 ) then my

transformation consists of flipping everything over the x-axis. Our ultimate goal is to find the matrix that corresponds to
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some linear transformation. If v1, . . . ,vn is an input basis, then T (v1), . . . , T (vn) is a basis for the output space, because

for every v = c1v1 + . . . + cnvn I have T (v) = c1T (v1) + . . . + cnT (vn). Coordinates come from a basis, because every

vector can be written as the sum of multiples of vectors in the basis and those multiples are the coordinates. We now

want to construct the matrix A that represents the linear transformation T . We first have to choose a basis v1, . . . ,vn for

the input and a basis w1, . . . ,wm for the output. Now, I can express an input vector in terms of its coordinates and find a

matrix A that when multiplied by gives me the coordinates of the output vector. The correct choice of basis can make the

job of finding A significantly easier. For example, for the matrix corresponding to projection on a line in R2 choosing the

eigenvector basis gives me a unit vector on the projection line v1 and a unit vector perpendicular to it v2. Let w1 = v1

and w2 = v2 then projection will kill w2 and leave w1, which corresponds to the matrix ( 1 0
0 0 ) because ( 1 0

0 0 )( c1c2 ) = ( c10 ).

So the eigenvector basis leads to the diagonal matrix of eigenvalues. If we use the standard basis in R2, e1 and e2, then

the projection matrix that projects on the 45-deg. line (as we showed earlier) is P = aaT

aT a
= ( .5 .5.5 .5 ) but this matrix is not

as nice as the last matrix. In general, to find the matrix A given the bases v1, . . . ,vn and w1, . . . ,wm and starting with

v1 write T (v1) = a11w1 + . . .+ am1wm and the vector (a11, . . . , am1)T becomes the first column of A, and we repeat this

for v2 through vn. Consider now the linear transformation T = d
dx with the input space being c0 + c1x+ c2x

2 (thus the

basis is 1,x, and x2) and the output space being c1 + 2c2x (with basis 1 and x), and we have A = ( 0 1 0
0 0 2 ). Therefore the

derivative is a linear transformation.

1.31 Change of Basis; Image Compression

A change of basis is something that is commonly done in applications of linear algebra. It is for example widely used in

image compression. Imagine a grayscale picture that is 512 × 512 pixels where each pixel xi can take a value between 0

and 255 (in 8 bits). The information for the whole image can thus be stored in and represented by the vector x ∈ Rn

where in this case n = (512)2. A common compression scheme is called JPEG, and it is essentially a change of basis.

Compression takes advantage of the fact that many of the values neighboring in the vector x are very close to each other.

A standard basis for the space of x would consist of the standard unit vectors e1, . . . , en. But we need to find a better

basis and we can take the following orthogonal basis (which is known as the Fourier basis and it should be obvious

why): 

1

1

1
...

1

1


,



1
...

1

−1
...

−1


, . . . ,



1

−1

1
...

1

−1


Note how the first vector corresponds to a black (or white, you pick) picture. The next one is half black half white and

by the time you reach the last vector you have a checkers board. Think of it as a basis that starts with low-frequency

vectors and moves to higher and higher frequency ones. JPEG usually breaks the image into blocks of 8 by 8 pixels and

changes the basis on each of those blocks separately. So in comes a signal in the form of a vector x ∈ R64×64, and we

change basis and obtain the coefficients ci for x. Now comes the actual compression step, which produces ĉi and we can

write x̂ =
∑
ĉivi but now most of the last ci’s are just zero.

The competition to a Fourier basis is called wavelets. It is expected that in the future people will come up with even

better bases. A good basis should be fast (such as FFT, or the fast wavelet transform FWT), orthogonal, and only a

few basis vectors are enough to reproduce the image. Let’s say a linear transformation is represented by matrix A with

respect to besis v1, . . . ,vn and matrix B with respect to basis w1, . . . ,wn then the matrices A and B are similar, i.e.

B = M−1AM where M is the matric whose columns are the new basis vectors.
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